
A Tour of a Software Collection: IBM 704 FORTRAN

Paul McJones 23 June 2005 Board Retreat

The next few slides are intended to give you an impression of what you can learn studying the materials on the SCC's FORTRAN web site.

A few months before I was born, John Backus walked into IBM off the street, and was offered a job programming the SSEC. He accepted the job, and was soon immersed in the complexities of this electromechanical monster. One pitfall he told me about years later: accidentally gluing the long paper tape into a Moebius strip.

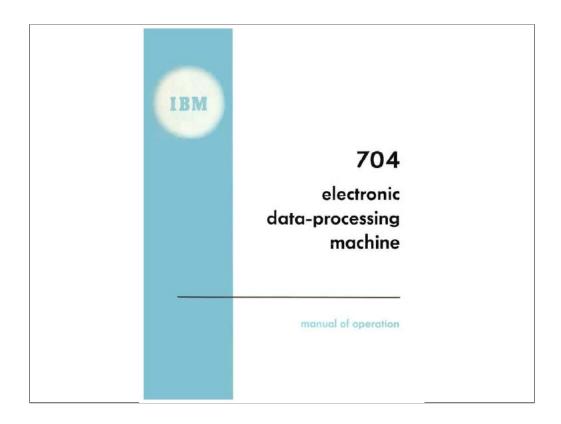
A few years later, IBM completed the 701, a true stored-program computer, and Backus, who considered himself lazy, considered how to ease the programming task.

OPERATION CODE	OCT (DEC	:)	CONV	ERSIO	N	NO		-	-
00 (00) STOP	20 (16)	MPY	40 (32)	64	(52)	ZONE	12	11	0
01 (01) TR	21 (17)	MPY R	41 (33)	65	(53) ZO	UF	+	-	0
02 (02) TR OV	22 (18)	DIV	42 (34)	66	(54) ON		T.	15	-
03 (03) TR +	23 (19)	ROUND	43 (35)	67	(55)		-		
04 (04) TR 0	24 (20)	L LEFT	44 (36)	70	(56) 1	1.	A	J	1
05 (05) SUB	25 (21)	L RIGHT	45 (37)	71	(57)			100	-
06 (06) R SUB	26 (22)	ACC LT	46 (38)	100000	(58) 2	2	В	K	S
07 (07) SUB ABS	27 (23)	ACC RT	47 (39)		(59)	3	c		-
10 (08) NO OP	30 (24)	READ	50 (40)	2000	(60)	3	-	L	T
11 (09) ADD	31 (25)	READ B	51 (41)	Contract of	(61) 4	4	D	M	u
12 (10) R ADD	32 (26)	WRITE	52 (42)		(62)	-		***	_
13 (11) ADD ABS 14 (12) STORE	33 (27) 34 (28)	WR EOF	53 (43)		(63) 5	5	E	N	V
15 (13) STORE A	34 (28) 35 (29)	REWIND SET DR	54 (44) 55 (45)	CONTRACTOR OF THE PARTY OF THE	(64)				
16 (14) STORE MO	36 (30)	SENSE	55 (45)	101		6	F	0	V
17 (15) LOAD MQ	37 (31)	COPY	57 (47)	103	C. C	7	G	-	~
I (IS) LOAD ME	2, (31)	cori	60 (48)	104	130 E S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	9	P	×
			61 (49)	105		8	н	Q	1
			62 (50)		1001			-	8
			63 (51)	107		9	1	R	2
			The same	110	(72)	-			
					8 -	3 +		\$	1
	TH	INK			8.	4			0
					0.	-		-	9/

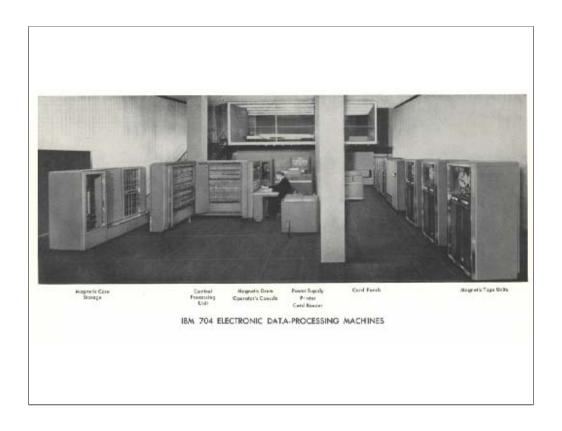
The machine had no index register or floating-point arithmetic, as indicated by this quick reference card that once belonged to Roy Nutt, who worked for United Aircraft at the time.

IBM 701 SPEEDCODING AND OTHER AUTOMATIC-PROGRAMMING SYSTEMS

John W. Backus and Harlan Herrick International Business Machines Corporation, New York, New York


Before the discussion of IBM's 701 Speedcoding System, it is interesting to consider the entire area of automatic programming for largescale calculators to obtain a perspective as to the position of such a system in this field. The basic purposes of automatic-programming systems are primarily the following:

- 1. to provide operations which are not part of a machine's
- repertoire as operations of the system,


 2. to provide operations which are part of a machine's repertoire in a more convenient form.

In other words, it is desired to supply the programmer with a more convenient language in which to designate a problem than that now used by the machine.

So Backus and his colleague Harlan Herrick came up with an interpretive system called Speedcoding that essentially provided a virtual machine that was more capable but slower than the real 701.

In the mean time, IBM was learning from the 701 and building a much more reliable and high performance scientific computer, the 704.

It had core memory to the 701's Williams tubes, and \dots

All of the real work is done in the central processing unit; that is, all additions, subtractions, multiplications, etc. are done in the special registers of the central processing unit. In addition to standard arithmetic, the 704 has instructions which will perform logical arithmetic for increased flexibility in doing complex problems. Also in the central processing unit are three index registers for automatic counting and effective address modification.

An important feature on the 704 is a complete set of instructions which will perform floating-point arithmetic. This manual includes a complete description of floating-point numbers and the special floating-point instructions (such as floating add, subtract, multiply, divide or halt, and divide or proceed) needed to manipulate data in this form.

... both index registers and floating-point. Backus realized that he needed to move beyond Speedcoding to make an impact on programmer productivity.

There was lots of pent-up demand for the 704, as evidence by this photograph of customers learning about the machines they would soon be taking delivery of.

Note John Backus, Gene Amdahl, Herb Grosch, and Harwood Kolsky, among others.

Engineering Memorandum E-364

A PROGRAM FOR TRANSLATION

of

MATHEMATICAL EQUATIONS FOR WHIRIMIND I

by

J. H. Laning Jr. and N. Zierler

January, 1954

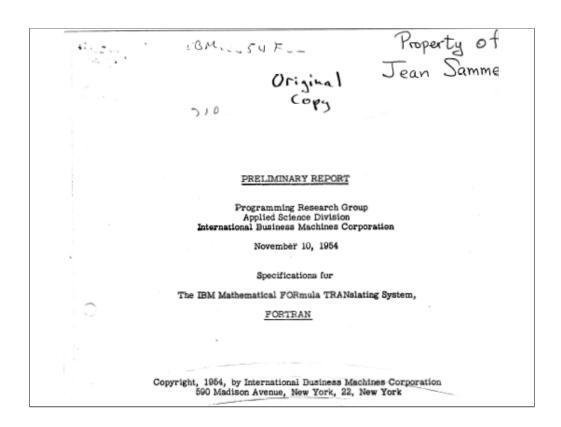
IINSTRUMENTATION LARGRATORY

MAGGACHUMETTO INSTITUTE OF TECHNOLOGY

H. H. Haming Jr.

N. January

N. Janu


Meanwhile, many people were thinking about how to ease the task of programming, including Laning and Zierler at MIT's Whirlwind project. They wrote an interpreter ...

```
10. Examples
     Suppose it is desired to print a table of values of cosine \boldsymbol{x}
 for x = 0, \cdot 1, \cdot 2, \cdot \cdot \cdot, 1 radian and that we decide to use up to
the x10 term in the power series for cosine x. This could be
accomplished by the following program:
               x = 0,

z = 1 - x^2/2 + x^4/2 \cdot 3 \cdot 4 - x^6 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6
                    + x<sup>8</sup>/2·3·4·5·6·7·8 = x<sup>10</sup>/2·3·4·5·6·7·8·9·10,
                 PRINT x, z.
                 x = x + .1,
e = x - 1.05,
                 CP 1,
                 STOP
     We might prefer an iterative scheme to produce the same
result. The following scheme has the advantage that the number of
terms in the series may be adjusted by changing a single number:
         y = y - 2,
e = 1 - y,
                 PRINT x, z.
                 x = x + 0.1,

a = x - 1.05,
                 CP 1,
                 STOP
```

... that Backus (who with Herrick independently had a similar idea) believes "was the world's first operating algebraic compiler, a rather elegant but simple one."

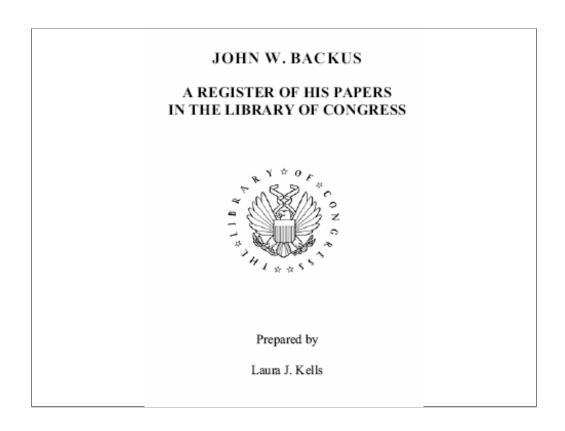
Backus went to his boss Cuthbert Hurd, and proposed to build a compiler, not an interpreter, for an algebraic language to be called FORTRAN.

15. DESIRABLE TECHNIQUES TO USE IN PROGRAMMING A PROBLEM TO BE CODED BY FORTRAN

Although the FORTRAN system is being designed to produce a correct program from a correct meaningful set of FORTRAN formulas and although the programmer will invariably discover many possible formulations of the same problem, the use of certain techniques will, of course, result in more efficient 704 programs.

A. REPRESENTATION OF COMPLICATED EXPRESSIONS

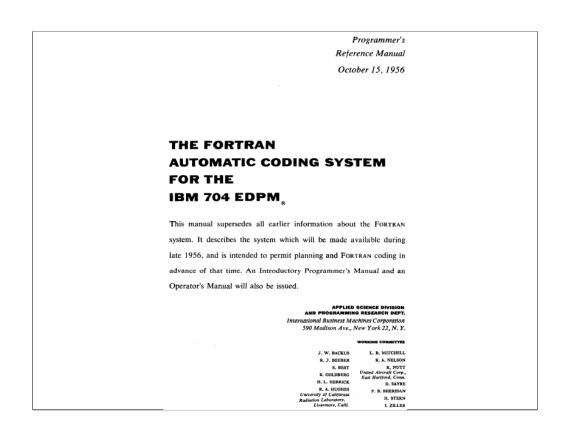
In translating a single arithmetic formula, the FORTRAN system will permute the operations indicated in the expression on the right wherever this is permissible in order to minimize the number of STORE instructions which will be required in the resulting 704 program. Thus a x b x c /d/e would be permuted to a/dxb/exc. However, any order of computation which is specified by use of parenthesis will be followed. Furthermore, if certain portions of an expression are identical to certain other portions of the same expression (all in the same formula), the system will recognize this and avoid duplicate calculations. To enable the FORTRAN system to recognize duplications of various subexpressions in an expression on the right side of an arithmetic formula, it will only be necessary to enclose duplicated subexpressions where they appear as part of a term in the expression. Where duplicated subexpression is a function which appears in several places with the same argument, it will not be necessary to enclose the term in parentheses. Furthermore, if the duplicated subexpression is a function which appears in several places with the same argument, it will not be necessary to enclose the function in parentheses even though it may be a portion of a term. Thus the following expression:


 $a \times b \times c \times (a \times b \times c + e \times cos(a)) / (a \times b \times e + f \times cos(a)) + sqrt (a \times b \times e + f \times cos(a))$

may be written in the following form to avoid duplicate calculations:

 $((a\times b)\times c)\times ((a\times b)\times c + e\times cos(a))/((a\times b)\times e + f\times cos(a)) + sqrt((a\times b)\times e + f\times cos(a))$

In general then, if a complicated expression is involved in a problem, it is best not to introduce new dependent variables to represent portions of the complicated expression and then to represent the complicated expression as an expression involving the new dependent variables. Adherence to this principle allows the FORTRAN system to carry out the maximum amount of optimization.

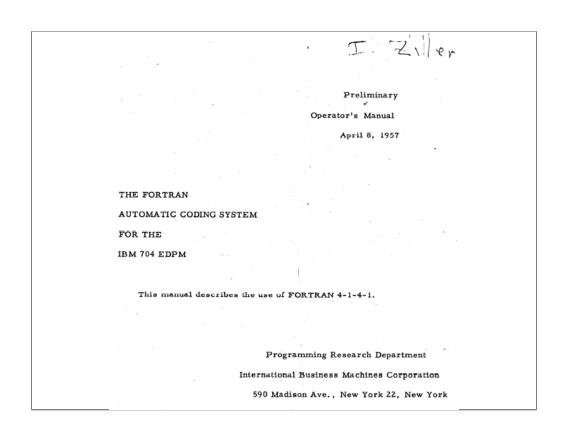

From the beginning, he realized that the compiler would need to generate very efficient machine code if he was to convince the aerospace companies and radiation laboratories to use it.

Unfortunately we don't have any email archives from the mid 1950s, but Backus donated his papers to the Library of Congress ...

	Items for the Library of Congress						
Item No.	Name of item	Box #/	Description/Comments				
			many of the objectives for Fortran (as discussed in item # 18).				
105	Automatic coding for digital computers by Grace Murray Hopper, no date	2					
106	Roy Nutt's Correspondence (in and out) 5/58 to 4/55		Lots of stuff about debugging Fortran, back and forth between Roy and Fortran group				
107	Roy Nutt's trips to NY to work with Fortran group + more correspondence with us	2					
108	Notes & Manual for Speedcoding 1 & 2	2					
109	Description of source language additions to the Fortran II system this describes what became known as Fortran III. It is the work of Irv Ziller.		Fortran III allowed users to insert symbolic 704 instructions into a Fortran source program				
110	Letter from me to Franz Ross, Applied Science Publications Group announcing a version of Fortran I for machines with a larger core storage unit (8192 words or more). The 1st version would run with 4096 words	2	May 7, 1957. This letter also announces a Fortran editing program, FNEDT1				
111	Preliminary report: Proposed specifications for Fortran II for the 704 6/28/57 see item # 76	2					
112	Note from David Sayre re the origin of the "function statement" in Fortran I	2					
113	Letter from me to John Greenstadt (responsible for distributing programs to SHARE) announcing the availability of FN1 (1 ²⁴ version of Fortran) on binary cards + an addenda to the manual + preliminary operator's manual. February 8, 1957	2	It soon turned out to be impossible to punch the binary cards, so this distribution did not take place. See item # 114				
114	Letter from me to John Greenstadt announcing the availability of Fortran 4-1-4-1 (requiring at least 4096 words of core storage) to be distributed on tapes.	2					
115	Programming Research Dept memos: (a) Tel extensions 3/19/57, (b) Job classifications 3/20/57, (c) ditto 8/15/58	2					
116	"Pro Res" 1957 – Dept newsletter produced by secretary Rosemarie Wright with contributions from dept members – 4 issues: Jan, Feb, Mar, Apr	2	This looks embarrassingly silly today				
117	Letter from C L (Chuck) Baker at Rand Corp to William Heising, 4/22/58 about "fatal error stops" in Fortran & how to override them	2					
118	Proposed additions and modifications in the specifications for the Fortran system 2/10/55 this note was retrieved by Jean Sammet from her files, probably around 6/78 for HOPL, see item # 17	2					
119	Letter from John McCarthy enclosing a listing for a machine language program FUNC, and chapters 1 & 2 describing a new compiler OMNITRAN	2	Includes the listing and the 2 chapters				

... and from sources like these, oral histories, etc., we can get a good impression of the course of the project.

After what seemed like endless delays, the team prepared for their first release. The date, October 15, 1956, proved to be a bit premature.


Formal Rules for Forming Expressions. By repeated use of the following rules, all permissible expressions may be derived.

- Any fixed point (floating point) constant, variable, or subscripted variable is an expression of the same mode. Thus 3 and 1 are fixed point expressions, and ALPHA and A(I,I,K) are floating point expressions.
- If SOMEF is some function of n variables, and if E, F,, H are a set of n expressions of the correct modes for SOMEF, then SOMEF (E, F,, H) is an expression of the same mode as SOMEF.
- 3. If E is an expression, and if its first character is not + or -, then +E and -E are expressions of the same mode as E. Thus -A is an expression, but +-A is not.
- 4. If E is an expression, then (E) is an expression of the same mode as E. Thus (A), ((A)), (((A))), etc. are expressions.
- If E and F are expressions of the same mode, and if the first character of F is not + or -, then

E + F E - F E * F E / F

are expressions of the same mode. Thus A-+B and A/+B are not expressions. The characters +, -, *, and / denote addition, subtraction, multiplication, and division.

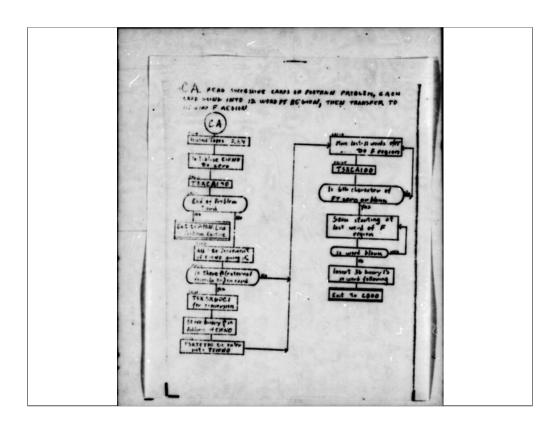
While computer scientists made fun of FORTRAN for the next few decades, it was actually a very powerful language with a compact and elegant reference manual, whose notation foreshadows the BNF Backus came up with later for the Algol project.

Lest you think FORTRAN was "just" a compiler, remember there were no operating systems at that time.

RUNNING THE OBJECT PROGRAM

The binary deck which is produced when switch 1 is UP consists of the object program in relocatable binary, together with the four-card FORTRAN relocating loader UA CSB3 and appropriate control card and transfer card. The binary deck is thus ready for immediate loading and execution. For further details see the forthcoming SHARE write-up for UA CSB3.

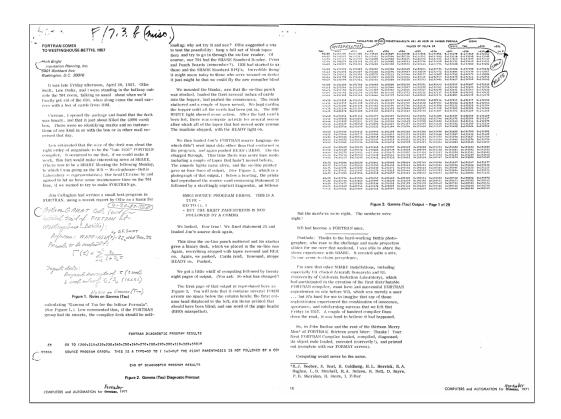
Details about using the binary tape form of the object program will be announced later.


The printer board to be used with FORTRAN object program is SHARE #2.

FORTRAN supplied a complete operating environment, with I/O, a loader, etc.

```
REM PASS1 / CALLS ON RDCIT1 AND MIH
                                                                            F4A01200
             THIS ROUTINE SCANS THE COMPLETE INSTRUCTIONS AND
       REM DIVIDES THE OBJECT PROGRAM INTO BASIC BLOCKS. A BASIC BLOCKF4A01220
       REM IS A STRETCH OF PROGRAM WITH ONL, ONE ENTRY POINT AND ONE F4A01230
       REM EXIT POINT. THE OUTPUT OF THIS ROUTINE IS BBLIST, A TABLE F4A01240
       REM LISTING THE BEGINNING OF EACH BASIC BLOCK (THE LOCATION
       REM SYMBOL OF THE 1ST INSTRUCTION OF EACH BASIC BLOCK). A TABLEF4A01260
       REM CALLED DOLIST IS ALSO COMPILED OF THE BEGINNING AND END OF F4A01270
       REM EVERY LOOP IN THE OBJECT PROGRAM.
                                                                            F4A01280
               PASS1 ALSO STARTS READING TIFGO, TRAD AND FRET FROM F4A01290
       REM TAPE FOR LATER PROCESSING.
                                                                           F4A01300
PASS1
       ZAC
                                                                            F4A01310
                                BE SURE DIV-CHECK IND IS OFF.
       DCT
                                                                           F4A01320
                                                                           F4A01330
              CITCNT, 0 CLEAR DECREMENT OF CIT COUNT.
CITCNT DIVIDE NO. OF WORDS IN CIT BY
ILNGTH LENGTH OF RESERVED AREA TO
CTSDC1 FIND TOD OF LAST RECORD READ
       SXD
                                                                           F4A01340
       LDQ
                                                                           F4A01350
       STO
                                                                           F4A01360
       DVP
               CTSPC1
                               FIND TOP OF LAST RECORD READ.
                                                                           F4A01370
       DCT
                                                                           F4A01380
                             DIVIDE ERROR GO TO DIAGNOSTIC.
               ERRM4, IR4
       TSX
                                                                           F4A01390
       REM
                                      LENGTH OF CITS PLACED IN CITCHT F4A01400
       REM
                                   BY SEC 3 , LENGTH OF CIT AREA DEFINED F4A01410
       REM
                                       BY ASSEMBLY.
                                                                           F4A01420
             CTRD1 ADD BOTTOM OF AREA TO GET LAST LOADED

LAST1 ADDRESS+1 AND SET FOR EXIT ROUTINE
       ADD
                                                                           F4A01430
       STA
                                                                          F4A01440
              RDTBLS, IR2
       TSX
                               START READING TIFGO.
                                                                           F4A01450
               (TAPE), IR4
                                READ FIRST RECORD OF CIT.
                                                                            F4A01460
                                                                           F4A01470
               CTRD1,, (RBEC)
               CTLBL,,CTAPE
                                                                            F4A01480
       LXA
               (SCHU) +CTAPE, IR1
                                                                            F4A01490
                                                                            F4A01500
               CTRD1, IR2
```


Now we've been harping on the idea that collecting and preserving the history of software means source code, so here's a look at some. This is from Section Four, which produces a flow graph. Here is where the idea of "basic block" originated.

One of the artifacts that I've been chasing for a long time was referred to by Backus in his history paper as "The Tome". I also learned that Roy Nutt, who was on loan from UAC, saved microfilm from the FORTRAN project. Here's an image, from a microfiche borrowed from his son Micah.

```
~/Desktop/s709win
                                                                                        _ 🗆 ×
$ ./runibsys.bat primesII.job primesii.txt
IBM 7094 Simulator 2.0.5
$LIST
$DATE
                 061805
                 PRIME NUMBERS
$J0B
$EXECUTE
                 FORTRAN
       ×ID
                        PRIME
       *XEQ
        BEGIN COMPILATION
            77 LINES OUTPUT THIS JOB.
       FORTRAN MONITOR RETURNING TO IBSYS
$ST0P
 PERIPHERAL UNIT POSITIONS AT END OF JOBS
                    REC. 00000, FILE 00002
 SYSPP1 IS A8
                      REC. 00069, FILE 00000
REC. 00002, FILE 00001
 SYSOU1 IS
SYSIN1 IS
               A4
END OF JOBS
  mcjones@pmcjones-t30 ~/Desktop/s709win
```

Luckily, in addition to the microfiche, I learned that machine-readable source and object code was available, on the web site of Paul Pierce, a private collector in Portland, Oregon. An emulator begun by Pierce and further developed by Dave Pitts is able to run the FORTRAN II compiler, although we can't yet run the generated code.

FORTRAN shipped in April 1957, and the users jumped on it immediately – as Herb Bright reported in 1971, they were able to get it running after receiving a binary deck unaccompanied by documentation.

August 28, 1957

Preliminary Report: Proposed Specifications for FORTRAN II for the 704

General

FORTRAN has now had some use at a large number of installations and has been used heavily for some time at at least six installations. A large number plan to use the system for the majority of their programming work. Difficulties in using FORTRAN have faller into two categories (1) Difficulties arising in the initial period of putting the system into use, and (2) Difficulties arising from the properties of the system. Problems in the first extraory are being solved by on-the-spot apart assistance to those installations experiencing an unual remount of first culties. The consensus of opinion concerning difficulties in category (2) is that the principal areas needing improvement are (a) facilities for debugging source programs and (b) facilities for creating and using subroutines. FORTRAN II will contain improved facilities in both these areas along the lines described below.

By August, Backus's group had helped put out a lot of fires and was planning the next version, with improved debugging and the ability to define and use separately-compiled subroutines.

They surveyed the users, and found rapid adoption and based on estimates of large gains in programmer productivity.

Programming Research

Mr. J. W. Backus

WHQ

September 23, 1957

In connection with the memorandum on proposed specifications for Fortran II for the 704, you will recall my request for a statement of what the proposed change will produce in the way of added flexibility. This would include an indication of the features proposed for Fortran for the 709 and Comtran which will be realized in Fortran II for the 704.

JCMcP:im

John C. McPherson

However the fifteen or twenty man-years that had been invested in FORTRAN were without precedent for a software project, and IBM management was a bit anxious and wanted to make sure that the software for the upcoming IBM 709 was suitably advanced.

Programming Research November 5, 1957

MEMORANDUM TO: Mr. J. C. McPherson

SUBJECT:

FORTRAN II

REFERENCE:

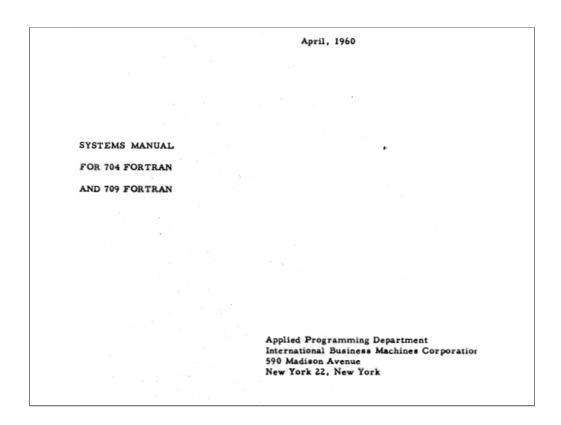
Your memo of 9/23/57

The added flexibility of FORTRAN II stems from the ability to add virtually any procedure as a new statement in the language. It is therefore difficult to summarize the features which will be added. Some examples undoubtedly are: matrix, complex and double precision arithmetic; monitor routines for manipulating the arrangement of subroutines in the store; routines for handling BCD information; special input-output operations.

With the exception of some format and spelling changes proposed for FORTRAN for the 709, FORTRAN II specs go considerably beyond any previous specs for the 709 system, in ways which we have discussed (independent subroutines; substitution of argument variables in calling statement for dummy variables in subroutine).

(b. w. 1

JWB:rw


Backus confidently predicted that the planned FORTRAN II extensions would be well received.

Dennis E. Hamilton. Impact of FORTRAN II language changes. Personal communication to Paul McJones, April 2005

"However, the impact of small changes and improvements can be immense. The ability to build Fortran programs out of independently-compilable modules and to have the ability to decompose into functions and subroutines using Fortran or any other tool that produced compatible code (usually the assembler, in those days) had an immense impact. In Fortran I programs were one giant file and there was no modularization structure. That small change in Fortran II was earthshaking in terms of software development and, I think, the endurance of Fortran as a technical-software programming tool.

It also changed the way that computers had to operate to make software building and use work more smoothly. I think it is no coincidence that this paralleled increased interest in operating systems (called things like tape monitors, at the time) and the use of the computer for organizing the data processing workflows. (There was also a lot of resistance to operating systems in those days.)"

Via the Internet, I ran across someone whose memories of the advent of FORTRAN II supported that prediction.

As the importance of FORTRAN became clear, more and more people began to work on. One of the benefits was improved documentation. This was before IBM unbundled its software, so interested customers were able to order copies of the source code and documentation.

VΙΙ

SECTION FOUR

PART 1

The first task of this part is to divide the object program into basic blocks, a basic block being a stretch of program with but one entry point, and one exit point. In order to do this, a pass is made over CIT looking for transfers, tests and skip type instructions. Transfer and conditional transfer addresses, and the locations of instructions following skip type instructions or TXLs (end tests of Dos), are all entered in the BBLIST table once only, in algebraic order, by means of a binary search technique. The assigned Go To instructions are ignored for the moment.

During this pass, when a TXL is encountered, both its location and address are entered in the DOLIST table, thus providing a list of the beginning and end locations of all Dos, in end location order.

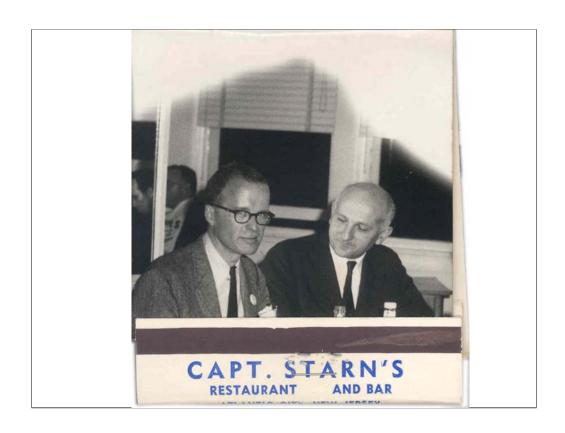
This is the chapter that describes the source code I showed you earlier. At the Smithsonian, I found a listing of FORTRAN II from around this same time period that IBM had sent to Peter Z. Ingerman, then at the University of Pennsylvania.

PROGRAMMING LANGUAGES AND THEIR COMPILERS
Preliminary Notes
Second Revised Version, April 1970

John Cocke and J. T. Schwartz

Courant Institute of Mathematical Sciences New York University

C. Index register allocation for Algebraic languages


Whereas rigorously based results applying to simplified models of register allocation in linearly ordered code are available (cf. Horwitz, Karp, Miller, and Winograd [1]), no such results have been derived for code containing even simple loops, much less for code with general flow. Thus register allocation in the presence of flow must use a heuristic lacking complete theoretical foundation. The particular method used will depend strongly on the extent to which global information is to be collected in support of register allocation. Machine structure will, of course. play a fundamental roll as well. The simplest scheme, incorporated in many industrial compilers, is to put a newly generated quantity in an empty register if possible; if none is available, the contents of the register used farthest away in the following code is displaced. In this method, register contents are remembered over the extent of a basic block, but all registers are stored and reloaded at each label. This method requires only local look-ahead.

A more elaborate register allocation heuristic has been outlined in a preceding section. Here we shall describe the allocation methods actually used in two interesting production compilers, the original FORTMAN I compiler and a FORTMAN compiler for the RGA SPECTRA 70.

The method which was used for index register allocation in the FORTRAN I compiler is described in Backus et al [1];

-510-

Because of the ACS project at IBM, John Cocke became very interested in compiler technology. Fifteen years after the FORTRAN compiler was written, he and Jack Schwartz found the FORTRAN index register allocation algorithms still worthy of inclusion in their classic unpublished book.

Here's an picture of John Backus and John Cocke in Atlantic City, New Jersey, date unknown.

I hope you've enjoyed your tour of the FORTRAN exhibit of the Computer History Museum.

To take your own tour

- http://community.computerhistory.org/scc/projects/FORTRAN/
- http://community.computerhistory.org/scc/projects/LISP/
- And my blog with the "behind the scenes" story:
 - http://www.mcjones.org/dustydecks/